$$ (fg)' = f'g + fg' \notag $$
$$ \frac{d}{dx}(f(x) \times g(x)) = g(x) \times \frac{d}{dx}f(x) + f(x) \times \frac{d}{dx}g(x) \notag $$
$$ \left( \frac {f}{g} \right) ' = \frac{f'g - fg'}{g^2} \notag $$
$$ \frac{d}{dx} \frac {f(x)}{g(x)} = \frac {g(x) \times \frac{d}{dx}f(x) + f(x) \times \frac{d}{dx}g(x)} {g^2(x)} \notag $$
$$ (f \circ g)'=(f' \circ g).g' \notag $$
$$ ( f(g(x)) )' = f'(g(x)).g'(x) \notag $$
$$ \frac{d}{dx} f(g(x)) = \frac{df}{dg}\frac{dg}{dx} \notag $$
$$ \frac {d}{dx} \mathrm{e}^{ g(x) } = g'(x) \mathrm{e}^{g(x)} \notag $$
$$ \frac {d}{dx} \mathrm{e}^{ g(x) } = \frac{dg(x)}{dx} \times \mathrm{e}^{g(x)} \notag $$
$$ \frac {d}{dx} \ln (g(x)) = \frac {g'(x)}{g(x)} \notag $$
$$ \frac {d}{dx} \ln (g(x)) = \frac { \frac{d}{dx}g(x)}{g(x)} \notag $$