Free collection of beautiful vector icons for your web pages.

Matlab optimization, example of function optimization

This page is an example of function minimization with the Matlab function fminsearch. The example is composed of three files:

Function minimization with MATLAB fminsearch

Main code

%% Optimization example
% This file is the main script
% Written by Philippe Lucidarme
close all;
clear all;

%% Display the function fct

X=[-4:0.1:4]; %% The X-axis goes from the value of -5 to +5 with a step of 0.1 (100 points)
Y=[-4:0.1:4]; %% like the X-axis
[wx,wy]=meshgrid(X,Y); %% see [MATLAB documentation][1]
% Compute each point of the mesh
for i=1:size(X,2)
    for j=1:size(Y,2)
        %Z=100.*(wy - wx.^2).^2 + (1 - wx).^2;
% Display curb
fig=surf(wx,wy,Z); %% make a surface plot with lighting
shading interp; %% optional, try to remove it.
%     hsv        - Hue-saturation-value color map.
%     hot        - Black-red-yellow-white color map.
%     gray       - Linear gray-scale color map.
%     bone       - Gray-scale with tinge of blue color map.
%     copper     - Linear copper-tone color map.
%     pink       - Pastel shades of pink color map.
%     white      - All white color map.
%     flag       - Alternating red, white, blue, and black color map.
%     lines      - Color map with the line colors.
%     colorcube  - Enhanced color-cube color map.
%     vga        - Windows colormap for 16 colors.
%     jet        - Variant of HSV.
%     prism      - Prism color map.
%     cool       - Shades of cyan and magenta color map.
%     autumn     - Shades of red and yellow color map.
%     spring     - Shades of magenta and yellow color map.
%     winter     - Shades of blue and green color map.
%     summer     - Shades of green and yellow color map.      
colormap cool; %% here you decide the colormap: hot is the one going from white to red
hold on;
xlabel ('x');
ylabel ('y');
title ('Optimization');

%% Optimization

% Initial point for optimization
x0 = [0,0];

% Set parameters
% optimplotfval, display the function evaluation
% iter, display algorithm status a each interation
% Call outfun at each iteration (for display)
options = optimset('PlotFcns',@optimplotfval,'Display','iter','OutputFcn', @outfun);
% Optimization algorithm
[x,FVAL,EXITFLAG,OUTPUT] = fminsearch(@fct,x0,options);

%% Display results

plot3 (x(1),x(2),fct(x),'or','MarkerSize',10,'LineWidth',5);

Function to optimize

You can uncomment alternative functions or program your own function.

function y = fct( x )
% fct  function to minimize
%   x = [x,y] input vector
%   y = function output (scalar)
% Written by Philippe Lucidarme

% Rosenbrock's function
%y = 100*(x(2) - x(1)^2)^2 + (1 - x(1))^2;

%y = (x(1)-4).^2 .* (x(2)-1.2).^2;

y = sinc(x(1)).*sinc(0.3*x(2));


Function called at each step

This function is called at each step, here it displays search points on the figure.

function stop = outfun(x, optimValues, state)
% fct  this function is called at each step of the optimization process
%   x :             the point computed by the algorithm at the current iteration.
%   optimValues :   is a structure containing data from the current iteration.
%   state :         current state of the algorithm.
% Written by Philippe Lucidarme

figure (1);
plot3 (x(1),x(2),optimValues.fval,'.k','MarkerSize',10);

See also

Last update : 05/24/2021